
ICCSNT 2024
Accelerating Power Big Data Queries by Binary Partitioning and Workload-Driven Pre-joins

Ruoyu Zhao, Tingdong Wang, Yinglong Ma
School of Control and Computer Engineering
North China Electric Power University

Beijing 102206, China

Summary

In this paper, we present a binary partitioning and
workload-driven pre-joins approach (BP-WPJ) to
enhance the efficiency of cross-departmental big data
queries within the power industry. A binary partitioning
is utilized to transform the original power property table
data into binary table data for effectively filtering out
null data and reducing the overall storage requirements.
We propose a workload-driven pre-joins processing for
reducing the number of repeated data scans and joins,
thus improving the efficiency of cross-departmental
queries. A query optimization module is used to
improve the response speed of queries containing
multiple unbound predicates. A large number of
experimental results on three datasets show that
compared with the established methods such as S2RDF,
S3QLRDF, and WORQ, the proposed method in this
paper can greatly reduce the execution time of the query
statement while reducing the storage space overhead.
Evaluation experiments with WORQ on the power
dataset show that our method can effectively improve
the query response speed for unbound predicate query
scenarios. The findings from these experiments validate
the effectiveness of BP-WPJ.

Framework

The overall framework of our BP-WPJ approach is
shown in Fig 1. The whole framework consists of two
main parts: offline data preprocessing and online
querying.

Fig. 1. Average query execution time

Experiments

In order to evaluate the effectiveness of the data
optimization module in this paper's approach to
alleviate the memory storage space waste problem, we
compare the memory storage space consumption of
BP-WPJ with other different approaches. The

experimental results are shown in Fig. 2.

Fig. 2. Memory storage space consumption
We run twenty different query statements on

different datasets and calculate their average running
times to evaluate the advantages of this paper's
approach in data query acceleration. The experimental
results are shown in Fig. 3.

Fig. 3. Average query execution time
We make the experimental methods execute

queries containing multiple unbound predicates and
compute the average execution time.The results are
shown in Fig. 4.

Fig. 4. Average execution time of queries with multiple unbound

predicates


