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INTRODUCTION
Unmanned Aerial Vehicles (UAVs) play a crucial role in search and rescue missions due 

to their flexibility and mobility. However, maintaining communication with Ground Control 

Stations (GCS) during maritime missions poses challenges. Optimizing UAV flight paths 

helps reduce communication interruptions and flight distance, saving time and energy. 

Traditional optimization algorithms improve path efficiency but often overlook communication 

issues. Deep Reinforcement Learning (DRL) performs well in this regard, but its reward 

settings often require multiple attempts, potentially affecting the strategy’s optimization and 

effectiveness. This study proposes the β-DQN algorithm, which optimizes path distance and 

communication through an innovative reward and decay mechanism.

Problem Formulation

Grid-Based Map Construction for UAV Path Planning

Total Path Cost Definition

Fig. 1 The UAV starts from the GCS (yellow), aiming to reach the mission site 

(red) while avoiding island obstacles (black), which are above the UAV's flight 

altitude, and maintaining communication with the GCS. Path planning is grid-

based: white cells are flyable areas, and green cells are relay nodes ensuring 

connectivity. The goal is to minimize both flight distance and communication loss, 

with distances measured by grid cells.

Fig. 2 In the grid-based scenario, the UAV 

can move to 8 adjacent grid cells, with an 

action space of {0, 1, 2, 3, 4, 5, 6, 7}. Black 

blocks represent obstacles, and if the UAV 

attempts to pass through one, it will remain 

in its current position. Diagonal movements 

may encounter dead-ends, meaning the 

UAV is blocked by obstacles on two sides 

and cannot proceed.

Equation 1 The total path cost    is a 

weighted sum of the flight distance ratio      

1    and the communication loss ratio       . 

Here, is the ratio of the UAV’s flight 

distance to that of the baseline algorithm, 

and       is the ratio of the communication 

loss distance to the baseline. The A* 

algorithm serves as the baseline for both 

metrics.

Methodology

Results

Effect analysis of β-DQN with different parameters

Performance Comparison of Different Algorithms

Conclusion

This paper redefines the reward model, incorporating the communication interruption 

penalty into the reward decay, allowing the algorithm to converge more quickly and 

simplifying parameter tuning. The reward is divided into two parts: r, used to guide the 

path in the early stages and gradually decaying to zero with   ; and R, representing the 

final reward for reaching the destination, which is set much higher than r .The decay 

factor    applies to both flight distance and communication loss, with a communication 

interruption penalty     included in the decay, unifying it with the penalty for increased 

flight distance. This ensures faster convergence and simpler parameter tuning, as shown 

below. 

Fig. 3 The comparison shows that the β-DQN algorithm reduces grid revisits and 

performs better in planning compared to traditional methods like A* and DQN. It also 

achieves a lower total path cost by effectively minimizing no-communication areas, 

using       and       as metrics.
Fig. 4 The comparison shows that the 

improved β-DQN algorithm converges faster 

and more stably to the path with the lowest 

total cost, compared to traditional DQN. The 

traditional DQN tends to converge to 

suboptimal paths due to early penalties for 

communication interruptions. The improved 

algorithm incorporates these penalties into 

reward decay, enhancing both convergence 

speed and stability.

Fig. 5 The success criterion is reaching 

convergence within 3000 training episodes. 

Different R values affect the    range for 

successful path planning. For R = 100, 1000, 

and 2000, the ranges of     for 100% success 

are [0,3], [0,3.5], and [0,4]. As R increases, the 

effective   range expands, enabling broader 

successful planning.

Fig. 6 This shows the relationship between n and     in the reward setting, where       

1  is set as         . Optimal solutions are achieved when     matches this formula, 

with examples at n = 3/4 and         , n = 1/3 and           , and n = 0 with           .  

Fig. 7 The total path cost   is affected by 

different R values with fixed     and n. When R is 

set to 100, path planning fails, while at              , 

some inconsistencies arise. As R increases 

further, the optimal path cost is achieved, but 

increasing R beyond a certain point does not 

improve results.

Fig. 8 In practical applications, it 

is recommended to set the initial 

R to 2000 and 1 to 0. If path 

planning fails, increase R. If flight 

distance is met but 

communication fails, increase 1; 

if communication is met but flight 

distance fails, decrease 1. If 

neither is met, no valid path 

exists. If both are met, the path is 

valid.

In maritime UAV path planning, minimizing flight distance and communication 

interruption is key. This paper introduces β-DQN, which incorporates communication 

interruption penalties. This adjustment prevents the optimal path's action-value function 

from becoming negative, improving early exploration. The value of     balances 

communication and path efficiency, leading to faster and more stable results. The study 

also verifies the relationship between   and 𝑛, showing that beyond a certain R, 

increasing R does not enhance optimization, and provides a guideline for practical 

tuning in real-world applications.

In traditional DQN, when the reward R for reaching the destination gradually decays 

over time, penalties for communication interruptions can outweigh these rewards, 

causing the action-value function 111111 to turn negative. Moreover, since neural 

networks typically initialize the action-value function to values close to zero, this makes it 

difficult to find a decision path significantly better than others in the early stages of 

training, thus affecting both the stability and convergence of learning. To address these 

issues, β-DQN introduces the following improvements.


