

## A Dual-Graph Attention-Based Approach for Identifying Distribution Network Topology

Guoqiang Lin, Siyan Liu, Danni Shi, Xuan Wang, Shiliang Liu Artificial Intelligence on Electric Power System State Grid Corporation Joint Laboratory (State Grid Smart Grid Research Institute Co.,Ltd.)

Beijing 102209, China

| The distribution network needs to obtain the correct topology in time during the generation at work. Here our array problems of the case of the generation of the intervent operating to the section measurement problems of the during processing of the model in the section measurement problems of the during processing of the model in the section measurement problems of the during processing of the model in the section measurement problems of the during processing of the model in the section measurement problems of the during processing of the model in the section measurement problems of the during processing of the model in the section measurement problems of the during processing during the during the during the during processing during the d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Topology identification framework                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |              |           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-----------|--|
| TI-DGA modelExperimentsConvolutional layer:<br>$Z_{\mu} = c(GNN(0,A) + A^{2}))$ Called a function graph pooling layer:<br>$Z = c(D^{-1}\overline{A}D^{-1}Sa_{MD})$ TABLE II COMPARISON OF ALGORITHM PERFORMANCE<br>ON IEEE33 NODESAttention graph pooling layer:<br>$Z = c(D^{-1}\overline{A}D^{-1}Sa_{MD})$ TABLE II COMPARISON OF ALGORITHM PERFORMANCE<br>ON IEEE33 NODESConcaterial network with two<br>iden layers.TABLE II COMPARISON OF ALGORITHM PERFORMANCE<br>ON 0.921ON 0.921O.762O.777CONNULA)GNN(P,A+A*A)ON IEEE33 NODESConcateriateTI-DGAO.936O.827ConcateriateON IEEE33 NODESConcateriatePreRec<br>ON IEEE33 NODESConcateriatePreRec<br>ON IEEE33 NODESConcateriatePreRec<br>ON IEEE33 NODESConcateriatePreRec<br>ON IEEE33 NODESConcateriatePreConcateriatePreRec<br>ON IEEE33 NODESConcateriatePreConcateriatePreConcateriatePreConcateriatePreConcateriatePre <th col<="" th=""><th colspan="2"><ul> <li>The distribution network needs to obtain the correct topology in time during the operation to adjust the control strategy and ensure the safe operation of the distribution network. For the current problems of frequent changes of distribution network topology and difficulties in obtaining topology structure in real time, in this paper , we propose a distribution network topology identification method based on dual graph attention mechanism (TI-DGA), which firstly obtains the attention score by inputting different features and weight matrices in the graph convolution layer, and then uses a pooling mechanism to select top-k node features as the features of the whole graph to achieve the classification purpose.</li> <li>Contributions:</li> <li>we proposed a dual graph attention mechanism method TI-DGA, and the model can be suitable for application to topology feature learning and association feature learning of many different types of data.</li> <li>the model framework proposed in this paper is suitable for the application of online and offline patterns of distribution network topology identification.</li> <li>compared with other algorithms, the algorithm proposed in this paper has better accuracy on IEEE33 nodes and IEEE57 nodes.</li> </ul></th><th colspan="5"><ul> <li>Distribution network topology identification includes the following processes:</li> <li>Data Acquisition: the section measurement data, node voltage amplitude U, node injected active power P, and the corresponding topology labels are used as the initial samples.</li> <li>Data Processing: If the model is trained directly with the original data, it will increase the training difficulty and affect the topology recognition effect, so we normalize the voltage data. Missing data in the test set need to be filled to reduce their impact. In this paper, the kNN algorithm is used to interpolate the missing data.</li> <li>Offline Training: The filtered features from the above two steps are used as the input to the model, and the optimization and updating of the model parameters are achieved by iterations of the minimization error function, which consists of the actual and desired outputs of the model.</li> <li>Online Application: In this step, the collected measurement data of the current time section of the distribution network is input into the trained learning model, so that the operational topology of the current section of the distribution network can be output in real time.</li> </ul></th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <th colspan="2"><ul> <li>The distribution network needs to obtain the correct topology in time during the operation to adjust the control strategy and ensure the safe operation of the distribution network. For the current problems of frequent changes of distribution network topology and difficulties in obtaining topology structure in real time, in this paper , we propose a distribution network topology identification method based on dual graph attention mechanism (TI-DGA), which firstly obtains the attention score by inputting different features and weight matrices in the graph convolution layer, and then uses a pooling mechanism to select top-k node features as the features of the whole graph to achieve the classification purpose.</li> <li>Contributions:</li> <li>we proposed a dual graph attention mechanism method TI-DGA, and the model can be suitable for application to topology feature learning and association feature learning of many different types of data.</li> <li>the model framework proposed in this paper is suitable for the application of online and offline patterns of distribution network topology identification.</li> <li>compared with other algorithms, the algorithm proposed in this paper has better accuracy on IEEE33 nodes and IEEE57 nodes.</li> </ul></th> <th colspan="5"><ul> <li>Distribution network topology identification includes the following processes:</li> <li>Data Acquisition: the section measurement data, node voltage amplitude U, node injected active power P, and the corresponding topology labels are used as the initial samples.</li> <li>Data Processing: If the model is trained directly with the original data, it will increase the training difficulty and affect the topology recognition effect, so we normalize the voltage data. Missing data in the test set need to be filled to reduce their impact. In this paper, the kNN algorithm is used to interpolate the missing data.</li> <li>Offline Training: The filtered features from the above two steps are used as the input to the model, and the optimization and updating of the model parameters are achieved by iterations of the minimization error function, which consists of the actual and desired outputs of the model.</li> <li>Online Application: In this step, the collected measurement data of the current time section of the distribution network is input into the trained learning model, so that the operational topology of the current section of the distribution network can be output in real time.</li> </ul></th> | <ul> <li>The distribution network needs to obtain the correct topology in time during the operation to adjust the control strategy and ensure the safe operation of the distribution network. For the current problems of frequent changes of distribution network topology and difficulties in obtaining topology structure in real time, in this paper , we propose a distribution network topology identification method based on dual graph attention mechanism (TI-DGA), which firstly obtains the attention score by inputting different features and weight matrices in the graph convolution layer, and then uses a pooling mechanism to select top-k node features as the features of the whole graph to achieve the classification purpose.</li> <li>Contributions:</li> <li>we proposed a dual graph attention mechanism method TI-DGA, and the model can be suitable for application to topology feature learning and association feature learning of many different types of data.</li> <li>the model framework proposed in this paper is suitable for the application of online and offline patterns of distribution network topology identification.</li> <li>compared with other algorithms, the algorithm proposed in this paper has better accuracy on IEEE33 nodes and IEEE57 nodes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  | <ul> <li>Distribution network topology identification includes the following processes:</li> <li>Data Acquisition: the section measurement data, node voltage amplitude U, node injected active power P, and the corresponding topology labels are used as the initial samples.</li> <li>Data Processing: If the model is trained directly with the original data, it will increase the training difficulty and affect the topology recognition effect, so we normalize the voltage data. Missing data in the test set need to be filled to reduce their impact. In this paper, the kNN algorithm is used to interpolate the missing data.</li> <li>Offline Training: The filtered features from the above two steps are used as the input to the model, and the optimization and updating of the model parameters are achieved by iterations of the minimization error function, which consists of the actual and desired outputs of the model.</li> <li>Online Application: In this step, the collected measurement data of the current time section of the distribution network is input into the trained learning model, so that the operational topology of the current section of the distribution network can be output in real time.</li> </ul> |               |              |           |  |
| Convolutional layer:<br>$Z_{v} = \sigma(GNN(U, A))$<br>$Z_{r} = \sigma(GNN(U, A))$<br>$Z_{r} = \sigma(GNN(U, A))$<br>$Z_{r} = \sigma(GNN(U, A) + A^2)$ Readout layer:<br>$s = \frac{1}{h} \sum_{i=1}^{r} X_{i}(I) \max_{i=1}^{max} X_{i}$<br>$MLP$ layer: a feedforward fully<br>conceted neumal network with two<br>hidden layers.TABLE I COMPARISON OF ALGORITHM PERFORMANCE<br>ON IEEE33 NODES $Z = \sigma(D^{-1}XD^{-1}XO_{min})$<br>$Idx = top_rrank_{(2/kM)}$ . $Z_{max} = Z_{idx}$ MLP layer: a feedforward fully<br>conceted neumal network with two<br>hidden layers. $Algorithms$ $Acc$ $Pre$ $Rec$ $GNN(U,A)$ $GNN(P,A+A^*A)$ $A^*A$ $A^*A$ $A^*B$ $Acc$ $Pre$ $Rec$ $GNN(U,A)$ $GNN(P,A+A^*A)$ $GNN(P,A+A^*A)$ $A^*A$ $Acc$ $Pre$ $Rec$ $GNN(P,A+A^*A)$ $GNN(P,A+A^*A)$ $Acc$ $Pre$ $Rec$ $Acc$ $Pre$ $Rec$ $Acc$ $Pre$ $Rec$ $GNN(P,A+A^*A)$ $Acc$ $Pre$ $Rec$ $Acc$ $Acc$ $Pre$ $Rec$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TI-DGA model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Experiments                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |              |           |  |
| $\begin{aligned} \lambda_{y} = \sigma(\text{GNN}(P, A + A^{3})) & s = \frac{1}{h} \sum_{k=1}^{h} x_{k}^{(1)} \max x_{k} \\ \text{LightGBM} & 0.844 & 0.649 & 0.673 \\ \text{LightGBM} & 0.844 & 0.649 & 0.673 \\ \text{CBOOST} & 0.932 & 0.752 & 0.757 \\ \text{CNN} & 0.972 & 0.853 & 0.894 \\ \text{GONN}(J, A) & \text{idden layers.} \\ \text{idx} = top_rank_{(2 k V )}.Z_{mask} = Z_{idx} \\ \hline \\ GNN(U,A) & \text{GNN}(P,A+A^{*}A) & \text{GNN}(P,A+A^{*}A) \\ \hline \\ \hline \\ GNN(U,A) & \text{GNN}(P,A+A^{*}A) & \text{GNN}(P,A+A^{*}A) \\ \hline \\ \hline \\ \\ \hline \\ \\ Graph Pooling & \text{Graph Pooling} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Convolutional layer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Readout layer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TABLE I COMPARISON OF ALGORITHM PERFORMANCE<br>ON IEEE33 NODES                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |              |           |  |
| $ \begin{aligned} \begin{aligned} \lambda_{p} = \sigma(GNN(P, A + A^{2})) & L_{p} = L_{p} L_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Z_U = \sigma(GNN(U, A))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $s = \frac{1}{2} \sum_{i=1}^{N} r_{i} ll \max r_{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Algorith                                                                         | ns A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cc ]          | Pre          | Rec       |  |
| Attention graph pooling layer:<br>$Idx = co(\overline{D}^{-1}\overline{A}\overline{D}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{A}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{A}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{A}\overline{A}\overline{A}\overline{D}_{-1}^{-1}\overline{A}\overline{A}\overline{A}\overline{A}\overline{A}\overline{A}\overline{A}\overline{A}\overline{A}}\overline{A}A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $Z_{P} = \sigma(GNN(P, A + A^{2}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $N = \sum_{i=1}^{N} x_i \prod_{i=1}^{N} x_i \prod_{i=1}^$ | LightGB                                                                          | M 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 364 0         | .649         | 0.673     |  |
| $\begin{aligned} \mathbf{X} = \sigma(\mathbf{\bar{D}}^{-1}\mathbf{\bar{X}}\mathbf{D}^{-1}\mathbf{\bar{X}}\mathbf{Q}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{Q}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{D}_{-1}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf$ | Attention graph pooling layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MI P layer: a feedforward fully                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XGBoos                                                                           | t 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 932 0         | .762         | 0.757     |  |
| $Z = \alpha(\overline{D}^{-1}\overline{A}\overline{D}^{-1}\overline{X}\overline{D}_{3R})$ $Z = \alpha(\overline{D}^{-1}\overline{A}\overline{D}^{-1}\overline{X}\overline{D}_{3R})$ $Idden layers.$ $Idden layers.$ $GNN(U,A)$ $for N(U,A)$ $GNN(U,A)$ $GNN(P,A+A^*A)$ $GNN(P,A+A^*A)$ $GNN(P,A+A^*A)$ $GON(P,A+A^*A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Attention graph pooling layer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | connected neural network with two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CNN                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 972 0         | .853         | 0.894     |  |
| $idx = top_rank_{(2, k n]}, Z_{mask} = Z_{idx}$ $GNN(U,A)$ $for an (U,A)$ $GNN(U,A)$ $G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbf{Z} = \sigma \left( \widetilde{\mathbf{D}}^{-\frac{1}{2}} \widetilde{\mathbf{A}} \widetilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X} \Theta_{\text{att}} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hidden lavers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GCN                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 980 0         | .874         | 0.925     |  |
| $ \begin{array}{c} I = LQGA & 0.994 & 0.911 & 0.940 \\ \hline TABLE II COMPARISON OF ALCORNTHM PERFORMANCE \\ ON IEEE57 NODES \\ \hline TABLE II COMPARISON OF ALCORNTHM PERFORMANCE \\ ON IEEE57 NODES \\ \hline TABLE II COMPARISON OF ALCORNTHM PERFORMANCE \\ ON IEEE57 NODES \\ \hline TABLE II COMPARISON OF ACC VALUES ON IEEE53 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE53 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE53 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE53 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE \\ \hline TABLE III ALCORITHM COMP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | idr = ton rank(atture) Z = Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | indicit lay cas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAGPoo                                                                           | 1 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 989 0         | .893         | 0.936     |  |
| GNN(U,A)       GNN(P,A+A*A)         GNN(U,A)       GNN(P,A+A*A)         GNN(U,A)       GNN(P,A+A*A)         GNN(U,A)       GNN(P,A+A*A)         GNN(U,A)       GNN(P,A+A*A)         GNN(D,A)       GNN(P,A+A*A)         GNN(U,A)       GNN(P,A+A*A)         GNN(U,A)       GNN(P,A+A*A)         GNN(U,A)       GNN(P,A+A*A)         Goncatenate       GCncatenate         Graph Pooling       Graph Pooling         Graph Pooling       Graph Pooling         Graph Pooling       Graph Pooling         MLP       Readout         Readout       Readout         TABLE II ALGORITHM COMPARISON OF ACC VALUES ON IEEEST NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEEST NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEEST NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEEST NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEEST NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEEST NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEEST NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEEST NOES WITH ADDED NOISE         TABLE III ALGORITHM 0015       SAGPool 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ux = cop_r unk(z,  kN ), z_{mask} = z_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TI-DGA                                                                           | . 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 994 0         | .911         | 0.940     |  |
| Algorithms       Acc       Pre       Rec         IghtIGBM       0.812       0.578       0.603         XGBoost       0.919       0.715       0.692         CNN       0.965       0.825       0.811         GNN(U,A)       GNN(P,A+A*A)       0.905       0.825       0.811         GCN       0.9975       0.892       0.919         SAGPool       0.983       0.887       0.929         T-DGA       0.988       0.906       0.931         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEE33 NODES WITH ADDED NOISE       TVE=0.05       TVE=1.1         S       %       %       %       %       %         Graph Pooling       Free adout       Readout       TVE=0.01       TVE=0.05       TVE=1.1         S       %       %       %       %       %       %         Graph Pooling       Free adout       TVE=0.01       TVE=0.05       TVE=1.1         S       %       %       %       %       %         GRON       0.972       0.974       0.680       0.825         CNN       0.902       0.981       0.930       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GNN(U.A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TABLE II COMPARISON OF ALGORITHM PERFORMANCE<br>ON IEEE57 NODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |              |           |  |
| Image: Concatenate in the problem       Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Algorith                                                                         | ms A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Acc           | Pre          | Rec       |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LightGB                                                                          | M 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .812 0        | .578         | 0.603     |  |
| GNN(U,A)       GNN(P,A+A*A)         GNN(U,A)       GNN(P,A+A*A)         GON 0.975       0.825       0.811         GON 0.975       0.892       0.919         SAGPool       0.988       0.906       0.931         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON<br>IEEE33 NODES WITH ADDED NOISE       IEEE33 NODES WITH ADDED NOISE         Algorithm       TVE=0.01       TVE=0.05       TVE=0.5         S       %       %       %         V       %       %       %         Keadout       Readout       Readout       0.991       0.874       0.809       0.836         TI-DGA       0.992       0.931       0.846       SAGPool       0.984       0.972       0.935       0.886         TI-DGA       0.992       0.931       0.836       0.872       0.886       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON<br>IEEE57 NODES WITH ADDED NOISE       IEEE57 NODES WITH ADDED NOISE       0.836       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON<br>IEEE57 NODES WITH ADDED NOISE       IEEE57 NODES WITH ADDED NOISE       0.837         CNN       0.977       0.948       0.892       0.835       0.846         SAGPool       0.981       0.930       0.873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XGBoos                                                                           | st 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .919 0        | .715         | 0.692     |  |
| GNN(U,A)       GNN(P,A+A*A)         GOR (Concatenate)       GOR (Concatenate)         Graph Pooling       Graph Pooling         Graph Pooling       Graph Pooling         Graph Pooling       Graph Pooling         Readout       Readout         TH-DGA       0.983         Optimized (Concatenate)       NUP         Graph Pooling       Graph Pooling         Graph Pooling       Graph Pooling         Concatenate       NUP         Readout       Readout         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEEB3 NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEES7 NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEES7 NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEES7 NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEES7 NODES WITH ADDED NOISE         CNN 0.977       0.948       0.952       0.792         XGBoost 0.921       0.887       0.892       0.832         CNN 0.965       0.930       0.873       0.815         GCN 0.977       0.948       0.952       0.793         CNN 0.965       0.930       0.887       0.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CNN                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .965 0        | .825         | 0.811     |  |
| SAGPool       0.983       0.887       0.929         TI-DGA       0.988       0.906       0.931         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON         IEEE33 NODES WITH ADDED NOISE         Algorithm       TVE=0.01       TVE=0.05       TVE=1         s       %       %       %         LightGBM       0.848       0.792       0.724       0.657         XGBoost       0.919       0.874       0.809       0.838         GCN       0.976       0.923       0.912       0.846         SAGPool       0.992       0.972       0.935       0.809         GCN       0.976       0.953       0.912       0.846         SAGPool       0.992       0.921       0.935       0.868         TI-DGA       0.992       0.923       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON       IEEES7 NODES WITH ADDED NOISE       TABLE III ALGORITHM COMPARISON OF ACC VALUES ON         IEEES7 NODES WITH ADDED NOISE       TVE=0.5       TVE=1         S       %       %       %         MLP       IghtGBM       0.817       0.767       0.681       0.592         XGBoost       0.921       0.825       0.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GNN(U.A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GNN(P.A+A*A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GCN                                                                              | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .975 0        | .892         | 0.919     |  |
| Image: Concatenate for the concatenatenatenatenate for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAGPoo                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .983 (        | 0.887        | 0.929     |  |
| Concatenate       Concatenate         Graph Pooling       Graph Pooling         Graph Pooling       Graph Pooling         Readout       Readout         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEE33 NODES WITH ADDED NOISE         XGBoost 0.919       0.874         CON       0.972         0.912       0.724         0.6072       0.912         CON       0.972         0.984       0.972         0.984       0.972         0.984       0.930         0.981       0.930         0.981       0.930         MLP       TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE         XGBoost       0.992         MLP       MLP         MLP       XGBoost       0.992         MLP       XGBoost       0.992         XGBoost       0.992       0.881         CNN       0.965       0.930       0.873         XGBoost       0.992       0.892       0.852         XGBoost       0.991       0.982       0.933         XGBoost       0.921       0.892       0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11-DG/                                                                           | <b>N</b> 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .988 (        | .906         | 0.931     |  |
| Graph Pooling       Graph Pooling       TVE=0.01       TVE=0.05       TVE=0.5       TVE=1         S       %       %       %       %       %         LightGBM       0.848       0.792       0.724       0.657         XGBoost       0.919       0.874       0.809       0.725         CNN       0.976       0.953       0.912       0.846         SAGPool       0.984       0.972       0.935       0.868         TI-DGA       0.992       0.981       0.930       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEES7 NODES WITH ADDED NOISE       TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEES7 NODES WITH ADDED NOISE         XGBoost       0.921       0.892       0.852       0.798         CNN       0.965       0.930       0.873       0.815         GCN       0.977       0.948       0.893       0.834         SAGPool       0.981       0.952       0.917       0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Concatenate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TABLE III ALGORITHM COMPARISON OF ACC VALUES ON<br>IEEE33 NODES WITH ADDED NOISE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |              |           |  |
| S       %       %       %       %       %         Graph Pooling       Graph Pooling       LightGBM       0.848       0.792       0.724       0.657         LightGBM       0.848       0.899       0.874       0.809       0.725         CNN       0.972       0.956       0.899       0.838         GCN       0.976       0.953       0.912       0.846         SAGPool       0.984       0.972       0.935       0.868         TI-DGA       0.992       0.981       0.930       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE         CNN       0.921       0.892       0.852       0.798         XGBoost       0.921       0.892       0.852       0.798         CNN       0.965       0.930       0.873       0.815         GCN       0.977       0.948       0.950       0.936       0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Algorithm                                                                        | TVE=0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TVE=0.05      | TVE=0.5      | TVE=1     |  |
| Graph Pooling       Graph Pooling       Graph Pooling       0.848       0.792       0.724       0.657         XGBoost       0.9172       0.956       0.899       0.838         GCN       0.976       0.953       0.912       0.846         SAGPool       0.994       0.972       0.935       0.868         TI-DGA       0.992       0.981       0.930       0.872         Algorithm       TVE=0.01       TVE=0.05       TVE=0.5       TVE=1         S       %       %       %       %         LightGBM       0.817       0.767       0.681       0.592         XGBoost       0.921       0.892       0.852       0.798         CNN       0.965       0.930       0.873       0.815         GCN       0.977       0.948       0.893       0.834         SAGPool       0.981       0.952       0.917       0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S<br>LiebtCDM                                                                    | <b>70</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>%</u> 0    | <u> </u>     | <u>70</u> |  |
| Readout       Readout       Readout       0.819       0.874       0.809       0.725         CNN       0.972       0.956       0.899       0.838         GCN       0.976       0.972       0.935       0.912       0.846         SAGBoost       0.972       0.935       0.912       0.868         TI-DGA       0.992       0.981       0.930       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE       TVE=1       \$       \$       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       % <td>Graph Pooling</td> <td>Graph Pooling</td> <td>LightGBM</td> <td>0.848</td> <td>0.792</td> <td>0.724</td> <td>0.657</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Graph Pooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Graph Pooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LightGBM                                                                         | 0.848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.792         | 0.724        | 0.657     |  |
| Readout       Readout       Readout       0.572       0.535       0.899       0.838         GCN       0.972       0.953       0.912       0.846         SGPool       0.984       0.972       0.935       0.868         TI-DGA       0.992       0.981       0.930       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEES7 NODES WITH ADDED NOISE       IEEES7 NODES WITH ADDED NOISE         MLP       MLP       S       %       %       %         KGBoost       0.921       0.892       0.852       0.798         CNN       0.965       0.930       0.873       0.815         GCN       0.977       0.948       0.892       0.834         SAGPool       0.981       0.952       0.917       0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CNIN                                                                             | 0.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.874         | 0.809        | 0.725     |  |
| Readout       Readout       0.770       0.733       0.712       0.840         SAGPool       0.984       0.972       0.935       0.868         TI-DGA       0.992       0.981       0.930       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE         MLP       Sagorithm       TVE=0.01       TVE=0.05       TVE=0.5       TVE=1         Sagorithm       Sagorithm       0.921       0.892       0.852       0.798         CNN       0.965       0.930       0.873       0.815       0.592         XGBoost       0.921       0.892       0.852       0.798         CNN       0.965       0.930       0.873       0.815         GCN       0.977       0.948       0.893       0.834         SAGPool       0.981       0.952       0.917       0.840         TI-DGA       0.984       0.950       0.936       0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GCN                                                                              | 0.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.950         | 0.099        | 0.846     |  |
| Readout       Readout       0.904       0.904       0.912       0.930       0.872         TI-DGA       0.992       0.981       0.930       0.872         TABLE III ALGORITHM COMPARISON OF ACC VALUES ON IEEE57 NODES WITH ADDED NOISE         MLP       S       %       %       %         KGBoost       0.921       0.802       0.873       0.815         CNN       0.965       0.930       0.873       0.815         GCN       0.977       0.948       0.893       0.834         SAGROOI       0.981       0.952       0.917       0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ⊥ ⊥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAGPool                                                                          | 0.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.955         | 0.912        | 0.868     |  |
| Readout       Readout       Iterative       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501       0.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TI-DGA                                                                           | 0.907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.972         | 0.930        | 0.872     |  |
| Image: Mile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Readout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TABLE III ALGORITHM COMPARISON OF ACC VALUES ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |              |           |  |
| Algorithm       TVE=0.01       TVE=0.5       TVE=1         s       %       %       %       %         LightGBM       0.817       0.767       0.681       0.592         XGBoost       0.921       0.892       0.852       0.798         CNN       0.965       0.930       0.873       0.815         GCN       0.977       0.948       0.893       0.834         SAGPool       0.981       0.952       0.917       0.840         TI-DGA       0.984       0.950       0.936       0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frown$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IEEE57 NODES WITH ADDED NOISE                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |              |           |  |
| LightGBM         0.817         0.767         0.681         0.592           XGBoost         0.921         0.892         0.852         0.798           CNN         0.965         0.930         0.873         0.815           GCN         0.977         0.948         0.893         0.834           SAGPool         0.981         0.952         0.917         0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | └── <b>▶</b> (•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Algorithm                                                                        | TVE=0.01<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TVE=0.05<br>% | TVE=0.5<br>% | TVE=1     |  |
| MLP         XGBoost         0.921         0.892         0.852         0.798           CNN         0.965         0.930         0.873         0.815           GCN         0.977         0.948         0.893         0.834           SAGPool         0.981         0.952         0.917         0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LightGBM                                                                         | 0.817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.767         | 0.681        | 0.592     |  |
| MLP         CNN         0.926         0.930         0.873         0.815           GCN         0.977         0.948         0.893         0.834           SAGPool         0.981         0.952         0.917         0.840           TI-DGA         0.984         0.950         0.936         0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | XGBoost                                                                          | 0.921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.892         | 0.852        | 0.798     |  |
| GCN 0.977 0.948 0.893 0.834<br>SAGPool 0.981 0.952 0.917 0.840<br>TI-DGA 0.984 0.950 0.936 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CNN                                                                              | 0.965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.930         | 0.873        | 0.815     |  |
| SAGPool         0.981         0.952         0.917         0.840           TI-DGA         0.984         0.950         0.936         0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GCN                                                                              | 0.977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.948         | 0.893        | 0.834     |  |
| TI-DGA 0.984 0.950 0.936 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAGPool                                                                          | 0.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.952         | 0.917        | 0.840     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TI-DGA                                                                           | 0.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.950         | 0.936        | 0.857     |  |